在Python的数据分析库pandas中,mean(平均值)、std(标准差)和skew(偏度)是常用的统计量,这些统计量可以帮助我们更好地理解数据的特性和分布情况。
创新互联是一家专业提供镇雄企业网站建设,专注与成都网站设计、网站建设、H5高端网站建设、小程序制作等业务。10年已为镇雄众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。
1、mean(平均值):mean函数用于计算数据集的平均值,它返回的是数据集所有元素的平均值,如果数据集为空,mean函数将返回NaN。
我们有一个包含数字1, 2, 3, 4, 5的数据集:
import pandas as pd data = [1, 2, 3, 4, 5] df = pd.DataFrame(data, columns=['numbers']) print(df)
输出:
numbers 0 1 1 2 2 3 3 4 4 5
我们可以使用mean函数来计算这个数据集的平均值:
print(df['numbers'].mean())
输出:
3、0
2、std(标准差):std函数用于计算数据集的标准差,标准差是衡量数据集中数值偏离其平均值的程度,标准差越大,说明数据的离散程度越大;标准差越小,说明数据的离散程度越小,如果数据集为空,std函数将返回NaN。
我们有一个包含数字1, 2, 3, 4, 5的数据集:
import pandas as pd data = [1, 2, 3, 4, 5] df = pd.DataFrame(data, columns=['numbers']) print(df)
我们可以使用std函数来计算这个数据集的标准差:
print(df['numbers'].std())
输出:
1、4142135623730951
3、skew(偏度):skew函数用于计算数据集的偏度,偏度是衡量数据分布的不对称性,正偏度表示数据右偏,即数据分布的尾部在右侧;负偏度表示数据左偏,即数据分布的尾部在左侧,如果数据集为空,skew函数将返回NaN。
我们有一个包含数字1, 2, 3, 4, 5的数据集:
import pandas as pd from scipy.stats import skew import numpy as np data = [1, 2, 3, 4, 5] df = pd.DataFrame(data, columns=['numbers']) print(df)
我们可以使用skew函数来计算这个数据集的偏度:
print(skew(df['numbers']))
输出:
0、0000000000000000
这是因为我们的数据集是一个完全对称的数据集,所以偏度为0,如果我们改变数据集,例如添加一些大于5的数字,我们可以看到偏度的变化。
data = [1, 2, 3, 4, 5, 6, 7, 8, 9] df = pd.DataFrame(data, columns=['numbers']) print(df) print(skew(df['numbers']))
输出:
numbers 0 1.000000e+00 1 2.000000e+00 2 3.000000e+00 3 4.000000e+00 4 5.000000e+00 5 6.000000e+01 6 7.000000e+01 7 8.000000e+
网站名称:pandasmean,std,skew
文章来源:http://www.36103.cn/qtweb/news14/4364.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联