【经验帖】为什么分布式一定要有Redis?

【经验帖】为什么分布式一定要有Redis?

作者:孤独烟 2018-06-05 09:14:42

开源

分布式

Redis 考虑到绝大部分写业务的程序员,在实际开发中使用 Redis 的时候,只会 Set Value 和 Get Value 两个操作,对 Redis 整体缺乏一个认知。

10年积累的成都网站设计、做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先做网站设计后付款的网站建设流程,更有九台免费网站建设让你可以放心的选择与我们合作。

考虑到绝大部分写业务的程序员,在实际开发中使用 Redis 的时候,只会 Set Value 和 Get Value 两个操作,对 Redis 整体缺乏一个认知。

所以我斗胆以 Redis 为题材,对 Redis 常见问题做一个总结,希望能够弥补大家的知识盲点。

本文围绕以下几点进行阐述:

  • 为什么使用 Redis
  • 使用 Redis 有什么缺点
  • 单线程的 Redis 为什么这么快
  • Redis 的数据类型,以及每种数据类型的使用场景
  • Redis 的过期策略以及内存淘汰机制
  • Redis 和数据库双写一致性问题
  • 如何应对缓存穿透和缓存雪崩问题
  • 如何解决 Redis 的并发竞争 Key 问题

为什么使用 Redis

我觉得在项目中使用 Redis,主要是从两个角度去考虑:性能和并发。

当然,Redis 还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件,如 Zookeeper等代替,并不是非要使用 Redis。因此,这个问题主要从性能和并发两个角度去答。

性能

如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的 SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。

题外话:忽然想聊一下这个迅速响应的标准。根据交互效果的不同,这个响应时间没有固定标准。

不过曾经有人这么告诉我:"在理想状态下,我们的页面跳转需要在瞬间解决,对于页内操作则需要在刹那间解决。

另外,超过一弹指的耗时操作要有进度提示,并且可以随时中止或取消,这样才能给用户***的体验。"

那么瞬间、刹那、一弹指具体是多少时间呢?

根据《摩诃僧祗律》记载:

一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜有三十须臾。

那么,经过周密的计算,一瞬间为 0.36 秒、一刹那有 0.018 秒、一弹指长达 7.2 秒。

并发

如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。

这个时候,就需要使用 Redis 做一个缓冲操作,让请求先访问到 Redis,而不是直接访问数据库。

使用 Redis 有什么缺点

大家用 Redis 这么久,这个问题是必须要了解的,基本上使用 Redis 都会碰到一些问题,常见的也就几个。

回答主要是四个问题:

缓存和数据库双写一致性问题

  • 缓存雪崩问题
  • 缓存击穿问题
  • 缓存的并发竞争问题
  • 这四个问题,我个人觉得在项目中是常遇见的,具体解决方案,后文给出。

单线程的 Redis 为什么这么快

这个问题是对 Redis 内部机制的一个考察。根据我的面试经验,很多人都不知道 Redis 是单线程工作模型。所以,这个问题还是应该要复习一下的。

回答主要是以下三点:

  • 纯内存操作
  • 单线程操作,避免了频繁的上下文切换
  • 采用了非阻塞 I/O 多路复用机制

题外话:我们现在要仔细的说一说 I/O 多路复用机制,因为这个说法实在是太通俗了,通俗到一般人都不懂是什么意思。

打一个比方:小曲在 S 城开了一家快递店,负责同城快送服务。小曲因为资金限制,雇佣了一批快递员,然后小曲发现资金不够了,只够买一辆车送快递。

经营方式一

客户每送来一份快递,小曲就让一个快递员盯着,然后快递员开车去送快递。

慢慢的小曲就发现了这种经营方式存在下述问题:

  • 几十个快递员基本上时间都花在了抢车上了,大部分快递员都处在闲置状态,谁抢到了车,谁就能去送快递。
  • 随着快递的增多,快递员也越来越多,小曲发现快递店里越来越挤,没办法雇佣新的快递员了。
  • 快递员之间的协调很花时间。

综合上述缺点,小曲痛定思痛,提出了下面的经营方式。

经营方式二

小曲只雇佣一个快递员。然后呢,客户送来的快递,小曲按送达地点标注好,然后依次放在一个地方。

***,那个快递员依次的去取快递,一次拿一个,然后开着车去送快递,送好了就回来拿下一个快递。

上述两种经营方式对比,是不是明显觉得第二种,效率更高,更好呢?

在上述比喻中:

  • 每个快递员→每个线程
  • 每个快递→每个 Socket(I/O 流)
  • 快递的送达地点→Socket 的不同状态
  • 客户送快递请求→来自客户端的请求
  • 小曲的经营方式→服务端运行的代码
  • 一辆车→CPU 的核数

于是我们有如下结论:

  • 经营方式一就是传统的并发模型,每个 I/O 流(快递)都有一个新的线程(快递员)管理。
  • 经营方式二就是 I/O 多路复用。只有单个线程(一个快递员),通过跟踪每个 I/O 流的状态(每个快递的送达地点),来管理多个 I/O 流。

下面类比到真实的 Redis 线程模型,如图所示:

简单来说,就是我们的 redis-client 在操作的时候,会产生具有不同事件类型的 Socket。

在服务端,有一段 I/O 多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。

需要说明的是,这个 I/O 多路复用机制,Redis 还提供了 select、epoll、evport、kqueue 等多路复用函数库,大家可以自行去了解。

Redis 的数据类型,以及每种数据类型的使用场景

是不是觉得这个问题很基础?我也这么觉得。然而根据面试经验发现,至少百分之八十的人答不上这个问题。

建议,在项目中用到后,再类比记忆,体会更深,不要硬记。基本上,一个合格的程序员,五种类型都会用到。

String

这个没啥好说的,最常规的 set/get 操作,Value 可以是 String 也可以是数字。一般做一些复杂的计数功能的缓存。

Hash

这里 Value 存放的是结构化的对象,比较方便的就是操作其中的某个字段。

我在做单点登录的时候,就是用这种数据结构存储用户信息,以 CookieId 作为 Key,设置 30 分钟为缓存过期时间,能很好的模拟出类似 Session 的效果。

List

使用 List 的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用 lrange 命令,做基于 Redis 的分页功能,性能***,用户体验好。

Set

因为 Set 堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用 JVM 自带的 Set 进行去重?

因为我们的系统一般都是集群部署,使用 JVM 自带的 Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。

另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

Sorted Set

Sorted Set多了一个权重参数 Score,集合中的元素能够按 Score 进行排列。

可以做排行榜应用,取 TOP N 操作。Sorted Set 可以用来做延时任务。***一个应用就是可以做范围查找。

Redis 的过期策略以及内存淘汰机制

这个问题相当重要,到底 Redis 有没用到家,这个问题就可以看出来。

比如你 Redis 只能存 5G 数据,可是你写了 10G,那会删 5G 的数据。怎么删的,这个问题思考过么?

还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?

回答:Redis 采用的是定期删除+惰性删除策略。

为什么不用定时删除策略

定时删除,用一个定时器来负责监视 Key,过期则自动删除。虽然内存及时释放,但是十分消耗 CPU 资源。

在大并发请求下,CPU 要将时间应用在处理请求,而不是删除 Key,因此没有采用这一策略。

定期删除+惰性删除是如何工作

定期删除,Redis 默认每个 100ms 检查,是否有过期的 Key,有过期 Key 则删除。

需要说明的是,Redis 不是每个 100ms 将所有的 Key 检查一次,而是随机抽取进行检查(如果每隔 100ms,全部 Key 进行检查,Redis 岂不是卡死)。

因此,如果只采用定期删除策略,会导致很多 Key 到时间没有删除。于是,惰性删除派上用场。

也就是说在你获取某个 Key 的时候,Redis 会检查一下,这个 Key 如果设置了过期时间,那么是否过期了?如果过期了此时就会删除。

采用定期删除+惰性删除就没其他问题了么?

不是的,如果定期删除没删除 Key。然后你也没即时去请求 Key,也就是说惰性删除也没生效。这样,Redis的内存会越来越高。那么就应该采用内存淘汰机制。

在 redis.conf 中有一行配置:

  
 
 
 
  1. # maxmemory-policy volatile-lru 

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己):

  • noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
  • allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 Key。推荐使用,目前项目在用这种。
  • allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 Key。应该也没人用吧,你不删最少使用 Key,去随机删。
  • volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 Key。这种情况一般是把 Redis 既当缓存,又做持久化存储的时候才用。不推荐。
  • volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 Key。依然不推荐。
  • volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 Key 优先移除。不推荐。

PS:如果没有设置 expire 的 Key,不满足先决条件(prerequisites);那么 volatile-lru,volatile-random 和 volatile-ttl 策略的行为,和 noeviction(不删除) 基本上一致。

Redis 和数据库双写一致性问题

一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。

答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。

另外,我们所做的方案从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。

回答:首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

如何应对缓存穿透和缓存雪崩问题

这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。

缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

缓存穿透解决方案:

  • 利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试。
  • 采用异步更新策略,无论 Key 是否取到值,都直接返回。Value 值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。
  • 提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的 Key。迅速判断出,请求所携带的 Key 是否合法有效。如果不合法,则直接返回。

缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

缓存雪崩解决方案:

  • 给缓存的失效时间,加上一个随机值,避免集体失效。
  • 使用互斥锁,但是该方案吞吐量明显下降了。
  • 双缓存。我们有两个缓存,缓存 A 和缓存 B。缓存 A 的失效时间为 20 分钟,缓存 B 不设失效时间。自己做缓存预热操作。

然后细分以下几个小点:从缓存 A 读数据库,有则直接返回;A 没有数据,直接从 B 读数据,直接返回,并且异步启动一个更新线程,更新线程同时更新缓存 A 和缓存 B。

如何解决 Redis 的并发竞争 Key 问题

这个问题大致就是,同时有多个子系统去 Set 一个 Key。这个时候大家思考过要注意什么呢?

需要说明一下,我提前百度了一下,发现答案基本都是推荐用 Redis 事务机制。

我并不推荐使用 Redis 的事务机制。因为我们的生产环境,基本都是 Redis 集群环境,做了数据分片操作。

你一个事务中有涉及到多个 Key 操作的时候,这多个 Key 不一定都存储在同一个 redis-server 上。因此,Redis 的事务机制,十分鸡肋。

如果对这个 Key 操作,不要求顺序

这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做 set 操作即可,比较简单。

如果对这个 Key 操作,要求顺序

假设有一个 key1,系统 A 需要将 key1 设置为 valueA,系统 B 需要将 key1 设置为 valueB,系统 C 需要将 key1 设置为 valueC。

期望按照 key1 的 value 值按照 valueA > valueB > valueC 的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。

假设时间戳如下:

  • 系统A key 1 {valueA  3:00}
  • 系统B key 1 {valueB  3:05}
  • 系统C key 1 {valueC  3:10}

那么,假设这会系统 B 先抢到锁,将 key1 设置为{valueB 3:05}。接下来系统 A 抢到锁,发现自己的 valueA 的时间戳早于缓存中的时间戳,那就不做 set 操作了,以此类推。

其他方法,比如利用队列,将 set 方法变成串行访问也可以。总之,灵活变通。

总结

本文对 Redis 的常见问题做了一个总结。大部分是自己在工作中遇到,以及之前面试别人的时候,爱问的一些问题。

另外,不推荐大家临时抱佛脚,真正碰到一些有经验的工程师,其实几下就能把你问懵。***,希望大家有所收获吧。

文章名称:【经验帖】为什么分布式一定要有Redis?
网站网址:http://www.36103.cn/qtweb/news2/38302.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联