Python接口优化,性能飙升25倍!

背景

在府谷等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站建设、做网站 网站设计制作按需网站建设,公司网站建设,企业网站建设,成都品牌网站建设,全网营销推广,外贸网站制作,府谷网站建设费用合理。

我们负责的一个业务平台,有次在发现设置页面的加载特别特别地慢,简直就是令人发指

让用户等待 36s 肯定是不可能的,于是我们就要开启优化之旅了。

投石问路

既然是网站的响应问题,可以通过 Chrome 这个强大的工具帮助我们快速找到优化方向。

通过 Chrome 的 Network 除了可以看到接口请求耗时之外,还能看到一个时间的分配情况,选择一个配置没有那么多的项目,简单请求看看:

虽然只是一个只有三条记录的项目,加载项目设置都需要 17s,通过 Timing, 可以看到总的请求共耗时 17.67s ,但有 17.57s 是在 Waiting(TTFB) 状态。

 
 
 
 
  1. TTFB 是 Time to First Byte 的缩写,指的是浏览器开始收到服务器响应数据的时间(后台处理时间+重定向时间),是反映服务端响应速度的重要指标。 

Profile 火焰图 + 代码调优

那么大概可以知道优化的大方向是在后端接口处理上面,后端代码是 Python + Flask 实现的,先不盲猜,直接上 Profile:

第一波优化:功能交互重新设计

说实话看到这段代码是绝望的:完全看不出什么?只是看到很多 gevent 和 Threading,因为太多协程或者线程?

这时候一定要结合代码来分析(为了简短篇幅,参数部分用 “...” 代替): 

 
 
 
 
  1. def get_max_cpus(project_code, gids):  
  2.     """  
  3.     """  
  4.     ... 
  5.  
  6.     # 再定义一个获取 cpu 的函数  
  7.     def get_max_cpu(project_setting, gid, token, headers):  
  8.         group_with_machines = utils.get_groups(...)  
  9.         hostnames = get_info_from_machines_info(...)  
  10.         res = fetchers.MonitorAPIFetcher.get(...)  
  11.         vals = [  
  12.             round(100 - val, 4)  
  13.             for ts, val in res['series'][0]['data']  
  14.             if not utils.is_nan(val)  
  15.         ]  
  16.         maxmax_val = max(vals) if vals else float('nan')  
  17.         max_cpus[gid] = max_val      
  18.      #  启动线程批量请求  
  19.     for gid in gids:  
  20.         t = Thread(target=get_max_cpu, args=(...))  
  21.         threads.append(t)  
  22.         t.start()        
  23.      # 回收线程  
  24.     for t in threads:  
  25.         t.join()  
  26.     return max_cpus 

通过代码可以看到,为了更加快速获取 gids 所有的 cpu_max 数据,为每个 gid 分配一个线程去请求,最终再返回最大值。

这里会出现两个问题:

  1.  在一个 web api 做线程的 创建 和 销毁 是有很大成本的,因为接口会频繁被触发,线程的操作也会频繁发生,应该尽可能使用线程池之类的,降低系统花销;
  2.  该请求是加载某个 gid (群组) 下面的机器过去 7 天的 CPU 最大值,可以简单拍脑袋想下,这个值不是实时值也不是一个均值,而是一个最大值,很多时候可能并没有想象中那么大价值;

既然知道问题,那就有针对性的方案:

  1.  调整功能设计,不再默认加载 CPU 最大值,换成用户点击加载(一来降低并发的可能,二来不会影响整体);
  2.  因为 1 的调整,去掉多线程实现;

再看第一波优化后的火焰图:

这次看的火焰图虽然还有很大的优化空间,但起码看起来有点正常的样子了。

第二波优化:Mysql 操作优化处理

我们再从页面标记处(接口逻辑处)放大火焰图观察:

看到好大一片操作都是由 utils.py:get_group_profile_settings 这个函数引起的数据库操作热点。

同理,也是需要通过代码分析: 

 
 
 
 
  1. def get_group_profile_settings(project_code, gids):      
  2.     # 获取 Mysql ORM 操作对象  
  3.     ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))  
  4.     session = get_postman_session()      
  5.     profile_settings = {}  
  6.     for gid in gids:  
  7.         compound_name = project_code + ':' + gid  
  8.         result = session.query(ProfileSetting).filter(  
  9.             ProfileSetting.name == compound_name  
  10.         ).first()       
  11.          if result:  
  12.             resultresult = result.as_dict()  
  13.             tag_indexes = result.get('tag_indexes')  
  14.             profile_settings[gid] = {  
  15.                 'tag_indexes': tag_indexes,  
  16.                 'interval': result['interval'],  
  17.                 'status': result['status'],  
  18.                 'profile_machines': result['profile_machines'],  
  19.                 'thread_settings': result['thread_settings']  
  20.             }  
  21.             ...(省略)  
  22.     return profile_settings 

看到 Mysql ,第一个反应就是 索引问题,所以优先去看看数据库的索引情况,如果有索引的话应该不会是瓶颈:

很奇怪这里明明已经有了索引了,为什么速度还是这个鬼样子呢!

正当毫无头绪的时候,突然想起在 第一波优化 的时候, 发现 gid(群组)越多的影响越明显,然后看回上面的代码,看到那句: 

 
 
 
 
  1. for gid in gids:   
  2.     ... 

我仿佛明白了什么。

这里是每个 gid 都去查询一次数据库,而项目经常有 20 ~ 50+ 个群组,那肯定直接爆炸了。

其实 Mysql 是支持单字段多值的查询,而且每条记录并没有太多的数据,我可以尝试下用 Mysql 的 OR 语法,除了避免多次网络请求,还能避开那该死的 for

正当我想事不宜迟直接搞起的时候,余光瞥见在刚才的代码还有一个地方可以优化,那就是:

看到这里,熟悉的朋友大概会明白是怎么回事。

GetAttr 这个方法是Python 获取对象的 方法/属性 时候会用到,虽然不可不用,但是如果在使用太过频繁也会有一定的性能损耗。

结合代码一起来看: 

 
 
 
 
  1. def get_group_profile_settings(project_code, gids):   
  2.      # 获取 Mysql ORM 操作对象  
  3.     ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))  
  4.     session = get_postman_session()    
  5.      profile_settings = {}  
  6.     for gid in gids:  
  7.         compound_name = project_code + ':' + gid  
  8.         result = session.query(ProfileSetting).filter(  
  9.             ProfileSetting.name == compound_name  
  10.         ).first()  
  11.         ... 

在这个遍历很多次的 for 里面,session.query(ProfileSetting) 被反复无效执行了,然后 filter 这个属性方法也被频繁读取和执行,所以这里也可以被优化。

总结下的问题就是: 

 
 
 
 
  1. 1. 数据库的查询没有批量查询;  
  2. 2. ORM 的对象太多重复的生成,导致性能损耗;  
  3. 3. 属性读取后没有复用,导致在遍历次数较大的循环体内频繁 getAttr,成本被放大; 

那么对症下药就是: 

 
 
 
 
  1. def get_group_profile_settings(project_code, gids):      
  2.     # 获取 Mysql ORM 操作对象  
  3.     ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))  
  4.     session = get_postman_session()    
  5.         # 批量查询 并将 filter 提到循环之外  
  6.     query_results = query_instance.filter(  
  7.         ProfileSetting.name.in_(project_code + ':' + gid for gid in gids)  
  8.     ).all()  
  9.     # 对全部的查询结果再单条处理  
  10.     profile_settings = {}  
  11.     for result in query_results:  
  12.         if not result:  
  13.             continue  
  14.         resultresult = result.as_dict()  
  15.         gid = result['name'].split(':')[1]  
  16.         tag_indexes = result.get('tag_indexes')  
  17.         profile_settings[gid] = { 
  18.              'tag_indexes': tag_indexes,  
  19.             'interval': result['interval'],  
  20.             'status': result['status'],  
  21.             'profile_machines': result['profile_machines'],  
  22.             'thread_settings': result['thread_settings']  
  23.         }  
  24.             ...(省略)  
  25.     return profile_settings 

优化后的火焰图:

对比下优化前的相同位置的火焰图:

明显的优化点:优化前的,最底部的 utils.py:get_group_profile_settings 和 数据库相关的热点大大缩减。

优化效果

同一个项目的接口的响应时长从 37.6 s 优化成 1.47s,具体的截图:

优化总结

如同一句名言: 

 
 
 
 
  1. 如果一个数据结构足够优秀,那么它是不需要多好的算法。 

在优化功能的时候,最快的优化就是:去掉那个功能!

其次快就是调整那个功能触发的 频率 或者 复杂度!

从上到下,从用户使用场景去考虑这个功能优化方式,往往会带来更加简单高效的结果,嘿嘿!

当然很多时候我们是无法那么幸运的,如果我们实在无法去掉或者调整,那么就发挥做程序猿的价值咯:Profile

针对 Python 可以尝试:cProflile + gprof2dot

而针对 Go 可以使用: pprof + go-torch

很多时候看到的代码问题都不一定是真正的性能瓶颈,需要结合工具来客观分析,这样才能有效直击痛点!

其实这个 1.47s,其实还不是最好的结果,还可以有更多优化的空间,比如:

  1.  前端渲染和呈现的方式,因为整个表格是有很多数据组装后再呈现的,响应慢的单元格可以默认先显示 菊花,数据返回再更新;
  2.  火焰图看到还有挺多细节可以优化,可以替换请求数据的外部接口,比如再优化彻底 GetAttr 相关的逻辑;
  3.  更极端就是直接 Python 转 GO;

但是这些优化已经不是那么迫切了,因为这个 1.47s 是比较大型项目的优化结果了,绝大部分的项目其实不到 1s 就能返回

再优化可能付出更大成本,而结果可能也只是从 500ms 到 400ms 而已,结果并不那么高性价比。

所以我们一定要时刻清晰自己优化的目标,时刻考虑 投入产出比,在有限的时间做出比较高的价值(如果有空闲时间当然可以尽情干到底) 

新闻名称:Python接口优化,性能飙升25倍!
地址分享:http://www.36103.cn/qtweb/news24/5724.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联