继上篇讲过numpy切片问题后,今天就numpy索引问题,小编为大家带来详尽解析。
发展壮大离不开广大客户长期以来的信赖与支持,我们将始终秉承“诚信为本、服务至上”的服务理念,坚持“二合一”的优良服务模式,真诚服务每家企业,认真做好每个细节,不断完善自我,成就企业,实现共赢。行业涉及成都除甲醛等,在重庆网站建设、成都营销网站建设、WAP手机网站、VI设计、软件开发等项目上具有丰富的设计经验。
我们都知道,使用numpy可以存储和处理大型矩阵,必然需要学会使用矩阵的表示。矩阵中对应元素如何索引等。在此之前,我们已经学过线性代数中矩阵的表示,a[2][3]即表示第3行第4列的元素。那么,在numpy中也一样。
一维索引
import numpy as np A = np.arange(3,15) # array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) print(A[3]) # 6
A = np.arange(3,15).reshape((3,4)) """ array([[ 3, 4, 5, 6] [ 7, 8, 9, 10] [11, 12, 13, 14]]) """ print(A[2]) # [11 12 13 14]
A[2]对应的就是矩阵A中第三行(从0开始算第一行)的所有元素。
二维索引
当我们需要表示具体某个元素时,就需要使用到二维索引。依然使用上述例子。
print(A[1][1]) # 8 print(A[1,1]) # 8
对一定范围内的元素进行切片操作:
print(A[1, 1:3]) # [8 9] for row in A: # 对行操作 print(row) """ [3 4 5 6] [ 7 8 9 10] [11 12 13 14] """ for column in A.T: # 对列操作 print(column) """ [ 3 7 11] [ 4 8 12] [ 5 9 13] [ 6 10 14] """
注意:上述表示方法 A.T 即对A进行转置,再将得到的矩阵逐行输出即可得到原矩阵的逐列输出。
关于迭代输出的问题
import numpy as np A = np.arange(3,15).reshape((3,4)) print(A.flatten()) # [ 3 4 5 6 7 8 9 10 11 12 13 14] for item in A.flat: print(item) # 3 # 4 …… # 14
这一脚本中的flatten是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而flat是一个迭代器,本身是一个object属性。
numpy的切片和索引方法到这里就全部分享给大家了。更多Python学习推荐:PyThon学习网教学中心。
网站标题:创新互联Python教程:Python中numpy如何索引
分享地址:http://www.36103.cn/qtweb/news43/22943.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联